LIBOR market model
with SABR style stochastic volatility

Patrick Hagan
JPMorgan Chase
20 Finsbury Street
London, EC2YY 9AQ
United Kingdom

Andrew Lesniewski
Ellington Management Group
53 Forest Avenue
Old Greenwich, CT 06870
USA

First draft: May 24, 2006
This draft: April 30, 2008
Abstract

We propose and study the SABR/LMM model. This is a term structure model of interest rates with stochastic volatility that is a natural extension of both the LIBOR market model and the SABR model. The key result of the paper is a closed form asymptotic formula for swaption volatility in the SABR/LMM model which allows for rapid and accurate valuation of European swaptions.
1 Introduction

The SABR stochastic volatility model [8], and the LIBOR market model (LMM) [4], [15], [15] (see also [5] and [18] for comprehensive accounts) have gained acceptance as standard valuation and risk management models for portfolios of fixed income instruments. SABR is a conceptually simple and flexible stochastic volatility model used to capture the volatility smile on caps/floors and swaptions. It is particularly convenient on dealers' interest rate derivatives trading desks, as it allows them for rapid recalculations of the risk of large portfolios of vanilla options. LMM’s use is widespread among dealers to manage portfolios of exotic interest rate options, and on the buy side as a model for managing structured fixed income portfolios.
A serious limitation of the SABR model is that it is a single forward model, i.e. it is applicable to options of a fixed expiration and fixed tenor of the underlying. It is in principle (but not in practice) inconsistent to use SABR across different expiration dates or different tenors of underlying swaps. A consistent framework for valuing securities with such characteristics should be based on the arbitrage pricing theory.

The classic LMM model has no capability of matching the volatility smile on the vanilla options. On the other hand, it is deeply rooted in the arbitrage pricing theory. In fact, it can be viewed as the essentially unique model which satisfies the following requirements:

(i) The underlying state variables are finitely many (benchmark) forward rates.

(ii) For each of the benchmark forwards, there exists a suitable equivalent martingale measure, such that the forward follows Black’s model (or an extension thereof).

(iii) The model is arbitrage free.

The method of constructing a no-arbitrage extension of Black’s model satisfying the above requirements, the change of numeraire technique, became the paradigm for terms structure model building, and can easily be applied in other situations. In particular, various stochastic volatility extensions of LMM have been obtained and studied over the past few years. A shifted lognormal style dynamics has been described in [12], while a Heston type dynamics has been studied in [17] and [22]. See also [23] for another interesting approach.

The goal of this paper is to study an extension of the LMM which naturally incorporates the SABR model as the underlying single forward model. We shall refer to this model as the SABR/LMM model. Such a model provides a natural bridge between the vanilla and structured products markets: Valuation and risk management of the structured portfolio can be done consistently with the vanilla markets.

The main issue with the LMM approach to term structure modeling is calibration. We use the technique of low noise expansions in order to produce accurate and workable approximations to swaptions volatilities. We also derive approximate expressions for rapid drift terms calculation.

SABR style volatility dynamics have been studied in [10], [16], [19], [20]. The dynamics proposed in [10] assumes that there is a single stochastic volatility process which drives the volatility of each of the LIBOR forwards. This assumption is motivated by the considerations of tractability: The associated backward Kolmogorov equation can be mapped onto a perturbed heat equation on a rank 1
symmetric space. The heat kernel for this space is known in closed form allowing for an intrinsic asymptotic expansion. Despite its elegance, this model suffers from that drawback that the assumption of a stochastic volatility process common to all maturities does not seem to be borne out by the markets. The models of [16], [19], [20] are similar to ours, and reflect the view that each LIBOR forward comes with its own volatility process.

The paper is organized as follows. In Section 2 we review the classic LMM and SABR models, chiefly in order to fix the notation. Section 4 outlines the standard derivation of extension of the SABR dynamics to an arbitrage free term structure model. In Section 4 we derive the dynamics of the swap rate under the SABR/LMM dynamics. Sections 5, 6 and 7 form the technical heart of the paper, and they contain the low expansion analysis of the model. Finally, the Appendix summarizes the change of numeraire technique as needed in this paper.

2 The classic models

In this section we briefly review the LMM and SABR models. LMM was originally proposed in [4], [15], and [15] as a multi-period extension of Black’s (lognormal) model. The commonly used CEV version was developed in [1]. The SABR model was proposed and studied in [8].

2.1 LIBOR market model

Under the T_k-forward measure Q_k (see the appendix), the dynamics of the LMM is given by the following system of stochastic differential equations:

$$dF_j(t) = C_j(t) dt + dW_j(t),$$

where

$$C_j(t) = C_j(F_j(t), t)$$

are instantaneous volatilities. The instantaneous volatilities are usually specified as

$$C_j(F_j(t), t) = \sigma_j(t) F_j(t)^{\beta_j},$$

with deterministic functions $\sigma_j(t)$. This specification includes the popular lognormal, normal, and CEV models. The functions $\sigma_j(t)$ are calibrated to the volatility.
market. The instantaneous correlation structure is given by:
\[E [dW_j(t) dW_k(t)] = \rho_{jk} dt. \] (3)

Under the spot measure \(Q_0 \) (see the appendix), the LMM dynamics reads:
\[dF_j(t) = C_j(t) \left(\sum_{\gamma(t) \leq i \leq j} \frac{\rho_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} dt + dW_j(t) \right). \] (4)

These equations have to be supplied with:

(a) Initial values for the LIBOR forwards:
\[F_j(0) = F_j^0, \] (5)
where \(F_j^0 \) is the current value of the forward which is implied by the current yield curve.

(b) Boundary conditions at \(F_j = 0 \): a natural choice is to assume Dirichlet (absorbing) boundary conditions.

The volatility smile structures implied by the LMM are rather rigid, and are not rich enough to match well the smiles frequently observed in the markets for vanilla caps/floors and swaptions. Volatility smiles of vanilla options are usually modeled by means of stochastic volatility models.

2.2 The SABR model

The SABR model attempts to capture the dynamics of a single forward rate \(F \). Depending on the context, this forward rate could be a LIBOR forward, a forward swap rate, the forward yield on a bond, etc. The SABR model is an extension of the CEV model,
\[dF(t) = \sigma F(t)^\beta dW(t), \] (6)
in which the volatility parameter \(\sigma \), called the \(\beta \)-volatility, is assumed to be stochastic and follow a diffusion process.

The full dynamics of the SABR model is given by:
\[dF(t) = \sigma(t) C(F(t)) dW(t), \]
\[d\sigma(t) = \alpha \sigma(t) dZ(t). \] (7)

The two Wiener processes \(W(t) \) and \(Z(t) \) are, in general, correlated,
\[E[dW(t) dZ(t)] = r dt, \] (8)
with a constant correlation coefficient r. The diffusion coefficient $C(F)$ is assumed to be of the CEV type:

$$C(F) = F^\beta,$$

where $0 \leq \beta < 1$. Note that we assume that a suitable numeraire has been chosen so that $F(t)$ is a martingale. The process $\sigma(t)$ is the stochastic component of the volatility of $F(t)$, and the constant α, known as the volvol, is the lognormal volatility of $\sigma(t)$. As usual, we supplement the dynamics with the initial condition

$$F(0) = F^0, \quad \sigma(0) = \sigma^0,$$

where F^0 is the current value of the forward, and σ^0 is the current value of the β-volatility.

Except for the special case of $\beta = 0$ [9], no explicit solution to this model is known. The general case can be solved approximately by means of an asymptotic expansion in the parameter

$$\varepsilon = \alpha \sqrt{T},$$

where T is the maturity of the option. In order to understand the meaning of this parameter, note that, since SABR is a single forward model, the option expiration time T defines a natural time scale for the problem. Writing $t = Ts$, and defining

$$X(s) = F(Ts), \quad Y(s) = \frac{\sigma(Ts)}{\alpha},$$

we recast the SABR dynamics in the form:

$$dX(t) = \varepsilon Y(t) C(X(t)) dW(t),$$
$$dY(t) = \varepsilon Y(t) dZ(t),$$

where we have also used the well known scaling law $W(Ts) = \sqrt{T} W(s)$ for Brownian motion. The initial conditions take the form:

$$X(0) = F^0, \quad Y(0) = \frac{\sigma^0}{\alpha}.$$

Note that we exclude $\beta = 1$. It is well known [13] that if $\beta = 1$ and $r > 0$, then the process $F(t)$, while a local martingale, fails to be a martingale.
We shall continue using the natural state variables F and σ, while keeping the appropriate orders in ε on our mind when doing asymptotic calculations.

Under typical market conditions, the parameter (11) is small and the asymptotic solution is actually quite accurate. Also significantly, this solution has a simple analytic form, and is very easy to efficiently implement in computer code. As a consequence, the asymptotic solution to the SABR model lends itself well to valuation and risk management of large portfolios of options in real time. In order to describe the asymptotic solution, we let

$$
\sigma_n = \sigma_n (T, K, F^0, \sigma_0, \alpha, \beta, r)
$$

(15)

denote the implied normal volatility of an option (i.e. a caplet/floort or a receiver/payer swaption) struck at K and expiring T years from now. The analysis of [8]2 of the model dynamics shows that the implied normal volatility is approximately given by:

$$
\sigma_n = \alpha \frac{F^0 - K}{\delta} \left[1 + \left(\frac{2\gamma_2 - \gamma_1^2}{24} v^2 + \frac{r\gamma_1}{4} v + 2 - \frac{3r^2}{24} \right) T\alpha^2 + \ldots \right],
$$

(16)

where v is defined as

$$
v = \frac{\sigma_0}{\alpha} C(F_{\text{mid}}).
$$

(17)

Here, F_{mid} denotes a conveniently chosen midpoint between F_0 and K (such as $(F_0 + K)/2$ or $\sqrt{F_0 K}$), and the coefficients γ_1, and γ_2, are given by

$$
\gamma_1 = \frac{C'(F_{\text{mid}})}{C(F_{\text{mid}})},
$$

$$
\gamma_2 = \frac{C''(F_{\text{mid}})}{C(F_{\text{mid}})}.
$$

The “distance function” entering the formula above is given by:

$$
\delta = \delta (K, F_0, \sigma_0, \alpha, \beta)
$$

$$
= \log \left(\frac{\sqrt{1 - 2r\zeta + \zeta^2} + \zeta - r}{1 - r} \right),
$$

where

$$
\zeta = \frac{\alpha}{\sigma_0} \int_{F_0}^{K} \frac{dx}{C(x)}
$$

$$
= \frac{\alpha}{\sigma_0} \frac{(F_0)^{1-\beta} - K^{1-\beta}}{1-\beta}.
$$

(18)

2See also [9] for analysis of the SABR model by means of heat kernel expansion on a hyperbolic manifold.
An analogous asymptotic formula exists for the implied lognormal volatility σ_{ln}.

For practical use in interest rate options portfolio management, an important step is calibration of the model parameters. For each benchmark option expiration and underlying tenor\(^1\) we have to calibrate four model parameters: $\sigma_0, \alpha, \beta, r$. In order to do it we need market implied volatilities for several different strikes. Experience shows that there is a bit of redundancy between the parameters β and r. As a result, one usually calibrates the model by fixing one of these parameters. Two common practices are:

(a) Fix β, say $\beta = 0.5$, and calibrate σ_0, α, r.

(b) Fix $r = 0$, and calibrate σ_0, α, β.

Calibration results show a persistent term structure of the model parameters as functions of the expiration and underlying tenor. Typical is the shape of the parameter α which start out high for short dated options and then declines monotonically as the option expiration increases. This indicates presumably that modeling short dated options should include a jump diffusion component.

3 Dynamics of the extended model

In this section we follow the standard change of numeraire technique in order to derive an arbitrage free term structure model which naturally extends a stochastic volatility forward rate model. A special case of that term structure model is the SABR/LMM model.

3.1 Arbitrage free valuation with stochastic volatility

We begin by describing a large class of term structure models including both the LMM and SABR models as special cases. To this end, we assume that the instantaneous volatilities $C_j(t)$ of the forward rates F_j are of the form

$$C_j(t) = C_j(F_j(t), \sigma_j(t), t),$$ \hspace{1cm} (19)

with stochastic $\sigma_j(t)$. Furthermore, we assume that, under the T_k-forward measure Q_k, the full dynamics of the forward is given by the stochastic system:

$$dF_k(t) = C_k(t) \, dW_k(t),$$
$$d\sigma_k(t) = M_k(t) \, dt + D_k(t) \, dZ_k(t),$$ \hspace{1cm} (20)

\(^1\)For seasoned instruments or nonstandard expirations and tenors we interpolate the parameters for the benchmark instruments.
where the drift and diffusion coefficients of the process $\sigma_t(t)$ are of the form

\begin{align}
M_k(t) &= M_k \left(F_k(t), \sigma_k(t), t \right), \\
D_k(t) &= D_k \left(F_k(t), \sigma_k(t), t \right),
\end{align}

(21)

respectively. Note that the dynamics of $\sigma_t(t)$ does not have to be, in general, a martingale. In particular, one could assume a mean reverting dynamics for the stochastic volatility parameter. The SABR/LMM model corresponds to the specification:

\begin{align}
C_k \left(F_k(t), \sigma_k(t), t \right) &= \sigma_k(t) F_k(t)^{\beta_k}, \\
M_k \left(F_k(t), \sigma_k(t), t \right) &= 0, \\
D_k \left(F_k(t), \sigma_k(t), t \right) &= \alpha_k(t) \sigma_k(t),
\end{align}

(22)

Note that $\alpha_k(t)$ is assumed here to be a (deterministic) function of t rather than a constant. This extra flexibility is added in order to make sure that the model can be calibrated to market data.

In addition, we impose the following instantaneous volatility structure:

\begin{align}
\mathbb{E} \left[dW_j(t) dZ_k(t) \right] &= r_{jk} dt, \\
\mathbb{E} \left[dZ_j(t) dZ_k(t) \right] &= \eta_{jk} dt.
\end{align}

(23)

(24)

The block matrix

\[
\Pi = \begin{bmatrix}
\rho & r \\
r' & \eta
\end{bmatrix}
\]

(25)

is assumed to be positive definite.

Let us now derive the dynamics of the entire extended LIBOR market model under the common forward measure Q_k. The form of the stochastic differential equations defining the dynamics of the LIBOR forward rates depends on the choice of numeraire. The no arbitrage requirement leads to equivalence between choices of numeraire: the corresponding stochastic systems expressed in terms of transformed Wiener measure. The mechanics or numeraire changes are discussed in the appendix.

Under the T_k-forward measure Q_k, the dynamics of the forward rate $F_j(t)$, $j \neq k$ reads:

\[
dF_j(t) = \Delta_j(t) dt + C_j(t) dW_j(t).
\]

We shall determine the drifts

\[
\Delta_j(t) = \Delta_j \left(F(t), \sigma(t), t \right)
\]
by requiring lack of arbitrage. Let us first assume that \(j < k \). The numeraires for the measures \(Q_j \) and \(Q_k \) are the prices \(P(t, T_j) \) and \(P(t, T_k) \) of the zero coupon bonds expiring at \(T_j \) and \(T_k \), respectively. Since the drift of \(F_j(t) \) under \(Q_j \) is zero, formula (73) yields:

\[
\Delta_j(t) \, dt = -d \left\{ F_j, \frac{P(\cdot, T_j)}{P(\cdot, T_k)} \right\}(t)
\]

\[
= -d \left\{ F_j, \prod_{j+1 \leq i \leq k} (1 + \delta_i F_i) \right\}(t)
\]

\[
= -d \left\{ F_j, \log \prod_{j+1 \leq i \leq k} (1 + \delta_i F_i) \right\}(t)
\]

\[
= -C_j(t) \sum_{j+1 \leq i \leq k} \frac{\rho_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} \, dt.
\]

Similarly, for \(j > k \), we find that

\[
\Delta_j(t) = C_j(t) \sum_{k+1 \leq i \leq j} \frac{\rho_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)}.
\]

We can thus summarize the result of the above calculations as follows. In order to streamline the notation, we let \(dW(t) = dW_{Q_k}(t) \) denote the Wiener process under the measure \(Q_k \). Then, as expected,

\[
dF_j(t) = C_j(t) \left\{ \begin{array}{l}
\sum_{j+1 \leq i \leq k} \frac{\rho_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} \, dt + dW_j(t), & \text{if } j < k, \\
-dW_j(t), & \text{if } j = k, \\
\sum_{k+1 \leq i \leq j} \frac{\rho_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} \, dt + dW_j(t), & \text{if } j > k.
\end{array} \right.
\]

(26)

Similarly, under the spot measure, the extended LMM dynamics reads:

\[
dF_j(t) = C_j(t) \left(\sum_{\gamma(t) \leq i \leq j} \frac{\rho_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} \, dt + dW_j(t) \right).
\]

(27)

Let us now compute the drift term \(\Gamma_j(t) = \Gamma_j(F(t), \sigma(t), t) \) for the dynamics of \(\sigma_j(t) \), \(j \neq k \), under \(Q_k \),

\[
d\sigma_j(t) = \Gamma_j(t) \, dt + D_j(t) \, dZ_j(t).
\]
Application of formula (73) yields:

\[\Gamma_j(t) = M_j(t) - D_j(t) \sum_{j+1 \leq i \leq k} \frac{r_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} , \]

if \(j < k \), and

\[\Gamma_j(t) = M_j(t) + D_j(t) \sum_{k+1 \leq i \leq j} \frac{r_{ji} \delta_i \sigma_i(t) C_i(t)}{1 + \delta_i F_i(t)} , \]

if \(j > k \).

In summary, the arbitrage free dynamics of the volatility parameters in the extended LMM model is given by:

\[
\begin{align*}
 d\sigma_j(t) &= M_j(t) \, dt + D_j(t) \times \\
 &\begin{cases} \\
 - \sum_{j+1 \leq i \leq k} \frac{r_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} \, dt + dZ_j(t), & \text{if } j < k, \\
 dZ_j(t), & \text{if } j = k, \\
 \sum_{k+1 \leq i \leq j} \frac{r_{ji} \delta_i \sigma_i(t) C_i(t)}{1 + \delta_i F_i(t)} \, dt + dZ_j(t), & \text{if } j > k.
 \end{cases}
\end{align*}
\]

(28)

The stochastic system (31) and (32) represents the dynamics of the extended LMM model under the \(T_k \)-forward measure \(Q_k \). The initial value problem for this system requires also the conditions:

\[
\begin{align*}
 F_j(0) &= F_j^0, \\
 \sigma_j(0) &= \sigma_j^0,
\end{align*}
\]

(29)

where the \(F_j^0 \)'s and \(\sigma_j^0 \)'s are the currently observed values.

Similarly, under the spot measure \(Q_0 \), the dynamics is given by the stochastic system:

\[
\begin{align*}
 dF_j(t) &= C_j(t) \left(\sum_{\gamma(t) \leq i \leq j} \frac{\rho_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} \, dt + dW_j(t) \right), \\
 d\sigma_j(t) &= M_j(t) \, dt + D_j(t) \left(\sum_{\gamma(t) \leq i \leq j} \frac{r_{ji} \delta_i C_i(t)}{1 + \delta_i F_i(t)} \, dt + dZ_j(t) \right), \quad (30)
\end{align*}
\]

supplemented by (29).
3.2 The SABR/LMM model

We can now reduce the general stochastic volatility terms structure model to the SABR/LMM model specified by the choices in (22). Under the T_k-forward measure Q_k, the dynamics reads:

\[
\begin{cases}
 - \sum_{j+1 \leq i \leq k} \frac{\rho_{ji} \delta_i \sigma_i(t) F_i(t)^{\beta_i}}{1 + \delta_i F_i(t)} \, dt + dW_j(t), & \text{if } j < k, \\
 dW_j(t), & \text{if } j = k, \\
 \sum_{k+1 \leq i \leq j} \frac{\rho_{ji} \delta_i \sigma_i(t) F_i(t)^{\beta_i}}{1 + \delta_i F_i(t)} \, dt + dW_j(t), & \text{if } j > k.
\end{cases}
\]

and

\[
\begin{cases}
 - \sum_{j+1 \leq i \leq k} \frac{r_{ji} \delta_i \sigma_i(t) F_i(t)^{\beta_i}}{1 + \delta_i F_i(t)} \, dt + dZ_j(t), & \text{if } j < k, \\
 dZ_j(t), & \text{if } j = k, \\
 \sum_{k+1 \leq i \leq j} \frac{r_{ji} \delta_i \sigma_i(t) F_i(t)^{\beta_i}}{1 + \delta_i F_i(t)} \, dt + dZ_j(t), & \text{if } j > k.
\end{cases}
\]

Similarly, under the spot measure Q_0, the dynamics is given by the stochastic system:

\[
\begin{aligned}
 dF_j(t) &= \sigma_j(t) F_j(t)^{\beta_j} \left(\sum_{\gamma(t) \leq i \leq j} \frac{\rho_{ji} \delta_i \sigma_i(t) F_i(t)^{\beta_i}}{1 + \delta_i F_i(t)} \, dt + dW_j(t) \right), \\
 d\sigma_j(t) &= \alpha_j(t) \sigma_j(t) \left(\sum_{\gamma(t) \leq i \leq j} \frac{r_{ji} \delta_i \sigma_i(t) F_i(t)^{\beta_i}}{1 + \delta_i F_i(t)} \, dt + dZ_j(t) \right).
\end{aligned}
\]

Let us note a number of new features of the SABR/LMM model as compare to the original models.

(i) SABR/LMM specifies the values of the CEV exponents β_j for each benchmark forward F_j but it does not use explicit CEV exponents β_{mn} for the benchmark forward swap rates S_{mn}. These are internally implied by the model.

(ii) There is no simple relation between the caplet β’s and the swaption β’s. Asymptotic expressions derived later in this paper show that the swaption β’s primarily depend on the caplet β’s, the β-volatilities, and the correlation matrix ρ.

The correlation matrices r and η determine the shape of the volatility smile. The entries r_{jj} are dominant contributors to the spot smile, while the forward smile is controlled mainly by η.

The models introduced in this section do not have analytic closed form solutions, except for trivial case of no correlations between the forwards (and corresponding β-volatilities)4 and normal forward dynamics. An interesting mathematical is whether, and under what conditions on the β’s and choices of boundary conditions at zero, a strong solution the SABR/LMM dynamics exists.

4 Swap model dynamics

In this section we derive the forward swap rate dynamics in SABR/LMM.

4.1 Swap rate process

Our approach is similar to the that of [1] and [2]. Consider a forward starting swap whose start date is T_m and whose end date is T_n. The level function associated with this swap is defined by:

$$L_{mn}^{mn}(t) = \sum_{m \leq j \leq n-1} \alpha_j P(t, T_{j+1}) ,$$

(34)

where α_j are the day count fractions for fixed rate payments, and where $P(t, T_j)$ is the time t price of the zero coupon bond maturing at T_j. The level function $L_{mn}^{mn}(t)$ represents the time t price of the annuity associated with the swap: this is an instrument paying 1 on each swap payment date. The (break-even) forward swap rate is given by:

$$S_{mn}^{mn}(t) = \frac{P(t, T_m) - P(t, T_n)}{L_{mn}^{mn}(t)}$$

$$= \frac{1}{L_{mn}^{mn}(t)} \sum_{m \leq j \leq n-1} \delta_j F_j(t) P(t, T_{j+1}) .$$

(35)

Typically, the payment frequency on the fixed leg is not the same as that on the floating leg (which we continue to denote by δ_j). This fact causes a bit of a notational nuisance but needs to be taken properly into account for accurate pricing. In order to lighten up the notation, we will suppress the subscripts mn throughout the remainder of this section.

4In this case, the SABR/LMM model reduces to a set of independent SABR models.
We shall now derive the stochastic differential equation for the forward swap rate. We fix a numeraire Q_l and derive the dynamics for $S^{mn}(t)$ under this numeraire. Ito’s lemma implies that

$$dS = \sum_{m\leq j \leq n-1} \frac{\partial S}{\partial F_j} dF_j + \frac{1}{2} \sum_{m\leq j, k \leq n-1} \rho_{jk} \frac{\partial^2 S}{\partial F_j \partial F_k} C_j C_k \, dt$$

$$+ \sum_{m\leq j \leq n-1} \frac{\partial S}{\partial F_j} C_j dW_j,$$

or

$$dS(t) = \Omega(t) \, dt + \sum_{m\leq j \leq n-1} \Lambda_j(t) \, dW_j(t), \quad (36)$$

where

$$\Omega = \sum_{m\leq j \leq n-1} \frac{\partial S}{\partial F_j} \Delta_j + \frac{1}{2} \sum_{m\leq j, k \leq n-1} \rho_{jk} \frac{\partial^2 S}{\partial F_j \partial F_k} C_j C_k, \quad (37)$$

and

$$\Lambda_j = \frac{\partial S}{\partial F_j} C_j. \quad (38)$$

Carrying out the partial differentiation we find that

$$\frac{\partial S}{\partial F_j}(t) = \frac{\delta_j P(t, T_{j+1}) + \Xi_j(t)}{L(t)}, \quad (39)$$

where

$$\Xi_j(t) = \frac{\delta_j \left[S(t) \sum_{j \leq l \leq n-1} \alpha_l P(t, T_{l+1}) - \sum_{j \leq l \leq n-1} \delta_l F_l(t) P(t, T_{l+1}) \right]}{1 + \delta_j F_j(t)}, \quad (40)$$

and so the coefficients Λ_j are explicitly given by:

$$\Lambda_j(t) = \frac{P(t, T_{j+1}) + \Xi_j(t)}{L(t)} C_j(t). \quad (41)$$

Equation (36) is the dynamics of the swap rate process in the SABR/LMM model under the measure Q_l. It will be convenient to change to the equivalent
martingale measure Q_{mn} associated with the annuity numeraire. Under Q_{mn}, we specify the swap rate dynamics as:

$$dS(t) = \sigma(t) S(t)^{\beta} dW(t),$$

(42)

where $0 \leq \beta = \beta_{mn} \leq 1$ is fixed. Set

$$\Theta_j(t) = \frac{\Lambda_j(t)}{S(t)^{\beta}}.$$

(43)

Then the β-volatility process $\sigma(t)$ can be explicitly written as

$$\sigma(t) = \sqrt{\sum_{m \leq j, k \leq n-1} \rho_{jk} \Theta_j(t) \Theta_k(t)},$$

(44)

and the Wiener process driving the dynamics of the swap rate is given by:

$$dW(t) = \frac{1}{\sigma(t)} \sum_{m \leq j \leq n-1} \Theta_j(t) dW_j(t).$$

(45)

4.2 Swap volatility process

Let us now focus on the process (44). We shall cast its dynamics into the form which will be convenient in the following. To this end, we write

$$\Theta_j(t) = S(t)^{-\beta} \frac{\partial S(t)}{\partial F_j} \sigma_j(t) \equiv H_j(t) \sigma_j(t),$$

(46)

where H_j does not explicitly depend on σ_j. As a consequence,

$$d\sigma(t) = \omega(t) dt + \alpha(t) \sigma(t) dZ(t),$$

(47)

where the drift $\omega(t)$ is

$$\omega = \frac{1}{\sigma} \sum_{m \leq j, k \leq n-1} \rho_{jk} \Theta_j \sigma_k \left(\frac{\partial H_k}{\partial t} + \sum_{m \leq l \leq n-1} \frac{\partial H_k}{\partial F_l} \Delta_l \right),$$

(48)

the lognormal volatility (process) $\alpha(t)$ is given by

$$\alpha^2 = \frac{1}{\sigma^4} \sum_{m \leq j, k \leq n-1 \atop m \leq j', k' \leq n-1} \rho_{jk} \rho_{j'k'} \Theta_j \Theta_{j'} \left(\eta_{kk'} \sigma_k \sigma_{k'} \Theta_k \Theta_{k'} + 2 \alpha_k \sigma_k \sum_{m \leq l \leq n-1} \rho_{kl} \frac{\partial H_k}{\partial F_l} \Theta_{k'} + \sigma_k \sigma_{k'} \sum_{m \leq l, l' \leq n-1} \rho_{ll'} \frac{\partial H_k}{\partial F_l} \frac{\partial H_{k'}}{\partial F_{l'}} \right).$$

(49)
and the Wiener process $Z(t)$ is
\begin{equation}
dZ = \frac{1}{\alpha \sigma^2} \sum_{m \leq j, k \leq n-1} \rho_{jk} \Theta_j \left(\alpha_k \Theta_k dZ_k + \sigma_k \sum_{m \leq l \leq n-1} \frac{\partial H_k}{\partial F_l} dW_l \right). \tag{50}
\end{equation}

Note that the correlation coefficient $r(t)$ between the Wiener processes (45) and (50) is given by
\begin{equation}
r = \frac{1}{\alpha \sigma^3} \sum_{m \leq i, j, k \leq n-1} \rho_{jk} \Theta_j \left(r_{ik} \alpha_k \Theta_k + \sigma_k \sum_{m \leq l \leq n-1} \rho_{il} \frac{\partial H_k}{\partial F_l} \right). \tag{51}
\end{equation}

5 Low noise solution

No explicit solution to the SABR/LMM dynamics seems to be available. In this section we shall construct an approximate solution by means of the technique known as low noise expansion. Such expansions are discussed in detail e.g. in [6], [14], and references therein. A version of the low noise expansions technique suitable for our needs is presented in Appendix B.

The SABR/LMM dynamics is of the form (76) with a diagonal diffusion matrix. Proceeding as in Appendix B, we write
\begin{equation}
F_j(t) = F_j^0 + F_j^1(t) + F_j^2(t) + F_j^3(t) + \ldots, \tag{52}
\end{equation}
and
\begin{equation}
\sigma_j(t) = \sigma_j^0 + \sigma_j^1(t) + \sigma_j^2(t) + \sigma_j^3(t) + \ldots. \tag{53}
\end{equation}

Applying the explicit expressions (81) to the SABR/LMM dynamics (31) - (32), and (33), we thus find that $F_j(t)$ can be expanded as
\begin{equation}
F_j(t) = F_j^0 + \int_0^t \Delta_j(s) \, ds + \int_0^t C_j(s) \, dW_j(s)
+ \int_{\Sigma_2} C_j(s_1) \nabla_j C_j(s_2) \, dW_j(s_1) \, dW_j(s_2)
+ \int_0^t \int_{0 \leq u \leq s \leq t} \frac{\partial C_j}{\partial \sigma_j}(s) D_j(u) \, dZ_j(u) \, dW_j(s) + \ldots, \tag{54}
\end{equation}

Similarly, for $\sigma_j(t)$ we have
\begin{equation}
\sigma_j(t) = \sigma_j^0 + \int_0^t \Theta_j(s) \, ds + \int_0^t D_j(s) \, dZ_j(s)
+ \int_0^t \int_{0 \leq u \leq s \leq t} \frac{\partial D_j}{\partial \sigma_j}(s) D_j(u) \, dZ_j(u) \, dZ_j(s) + \ldots. \tag{55}
\end{equation}
This is the desired low noise approximate solution to the model dynamics.

6 Valuation of vanilla options

The key component of any calibration methodology for the SABR/LMM is a fast and accurate valuation of vanilla options such as caps/floors and swaptions. To this end, we need closed form approximations for cap/floor and swaption volatilities in terms of quantities directly related to LIBOR forwards and observed volatilities. The rationale behind it is that pricing via Monte Carlo simulations is very time consuming, and renders efficient and accurate model calibration infeasible. In this section we derive such approximations and explain how to use them for model calibration.

Given a market snapshot as an input, calibration should result in the set of model parameters which allow for accurate pricing of the benchmark caplets/floorlets and swaptions. After some preprocessing, the calibration inputs can be formulated as the following set of data:

(i) The forward curve.

(ii) For a caplet expiring at T_j, the values of the CEV exponents β_j, β-volatility σ_j^0, volvol α_j, and correlation r_j.

(iii) For a swaption expiring at T_m into a swap maturing at T_n, the corresponding parameters β_{mn}, σ_{mn}^0, α_{mn}, and r_{mn}.

6.1 Approximate valuation of caps and floors

Not surprisingly, unlike the classic LMM model, exact closed form valuation of caps and floors is not possible in SABR/LMM. This is simply a reflection of the fact that SABR itself does not have have closed form solutions, and one either relies on the asymptotic solution (16) or Monte Carlo simulations.

The reassuring fact is that SABR/LMM allows for pricing of caps/floors which is consistent with market practice. This can be seen as follows. Assume that we have chosen the T_k-forward measure Q_k for pricing. A cap is a basket of caplets spanning a number of consecutive accrual periods. Consider the caplet spanning the period $[T_{j-1}, T_j]$. Shifting from Q_k to the T_j-forward measure Q_j, we note that its dynamics is that of the classic SABR model. Since instrument valuation is invariant under change of numeraire, this shows that the price of the caplet is consistent with its SABR price.
6.2 Approximate valuation of swaptions

Approximate swaption valuation is a more complicated matter. We perform the low noise expansion (54) and (55) for \(F_j \) and \(\sigma_j \), respectively. Substituting these expansions into the equation for the swap rate (36), we obtain

\[
dS(t) = \Omega(t) \, dt + \sum_{m \leq j \leq n-1} \Lambda_j(t) \, dW_j(t)
\]

\[
+ \sum_{m \leq j,k \leq n-1} \frac{\partial \Lambda_j}{\partial F_k}(t) \left(\int_0^t C_k(u) \, dW_k(u) \right) dW_j(t)
\]

\[
+ \sum_{m \leq j,k \leq n-1} \frac{\partial \Lambda_j}{\partial \sigma_k}(t) \left(\int_0^t D_k(u) \, dZ_k(u) \right) dW_j(t) + \ldots ,
\]

and thus

\[
S(t) = S_0 + \int_0^t \Omega(s) \, ds + \sum_{m \leq j \leq n-1} \int_0^t \Lambda_j(s) \, dW_j(s)
\]

\[
+ \sum_{m \leq j,k \leq n-1} \int_0^t \int_{0 \leq u \leq s \leq t} \frac{\partial \Lambda_j}{\partial F_k}(s) C_k(u) \, dW_k(u) \, dW_j(s)
\]

\[
+ \sum_{m \leq j,k \leq n-1} \int_0^t \int_{0 \leq u \leq s \leq t} \frac{\partial \Lambda_j}{\partial \sigma_k}(s) D_k(u) \, dZ_k(u) \, dW_j(s) + \ldots .
\]

We represent this series as

\[
S = S_0 + S^1 \varepsilon + S^2 \varepsilon^2 + O(\varepsilon^3),
\]

and use the expansion

\[
S^{-\beta} = (S_0)^{-\beta} \left(1 - \beta \frac{S^1}{S_0} \varepsilon + O(\varepsilon^2) \right)
\]

to infer that

\[
\frac{dS}{(S/S_0)^{\beta}} = \Omega(t) \, dt
\]

\[
+ \sum_{m \leq j,k \leq n-1} \left(\delta_{jk} - \beta \frac{S^1}{S_0} \right) \Lambda_k(u) \, dW_k(u) \Lambda_j(t) \, dW_j(t)
\]

\[
+ \sum_{m \leq j,k \leq n-1} \frac{\partial \Lambda_j}{\partial F_k}(t) \left(\int_0^t C_k(u) \, dW_k(u) \right) dW_j(t)
\]

\[
+ \sum_{m \leq j,k \leq n-1} \frac{\partial \Lambda_j}{\partial \sigma_k}(t) \left(\int_0^t D_k(u) \, dZ_k(u) \right) dW_j(t) + \ldots ,
\]
From this, we can calculate asymptotically the quadratic variation process of the swap rate and its expected value. As a result of a rather tedious albeit completely straightforward computation we find the following explicit expression:

\[
E \left[\int_0^T \left(\frac{dS(t)}{(S(t)/S_0)^\beta} \right)^2 \right] = \sum_{m \leq j, j' \leq n-1} \rho_{jj'} \int_0^T \Lambda_j(s) \Lambda_{j'}(s) \, ds
+ \sum_{m \leq j, k \leq n-1, m \leq j', k' \leq n-1} \rho_{jj'} \int_0^T \int_0^T \left[\rho_{kk'} \frac{\partial \Lambda_j(s)}{\partial F_k} \frac{\partial \Lambda_{j'}(s)}{\partial F_k'} (s) C_k(u) C_{k'}(u)
+ 2r_{kk'} \frac{\partial \Lambda_j(s)}{\partial \sigma_k} \frac{\partial \Lambda_{j'}(s)}{\partial \sigma_{k'}} (s) C_k(u) D_k'(u)
+ \eta_{kk'} \frac{\partial \Lambda_j(s)}{\partial F_k} \frac{\partial \Lambda_{j'}(s)}{\partial \sigma_{k'}} (s) D_k(u) D_{k'}(u)
- 2\rho_{kk'} \frac{\beta}{S_0} \Lambda_j(s) \frac{\partial \Lambda_{j'}(s)}{\partial F_{k'}} (s) \Lambda_k(u) C_{k'}(u)
- 2\rho_{kk'} \frac{\beta}{S_0} \Lambda_j(s) \frac{\partial \Lambda_{j'}(s)}{\partial \sigma_{k'}} (s) \Lambda_k(u) D_{k'}(u)
+ \rho_{kk'} \left(\frac{\beta}{S_0} \right)^2 \Lambda_j(s) \Lambda_{j'}(s) \Lambda_k(u) \Lambda_{k'}(u) + \ldots \right] \, du \, ds.
\]

We shall now reorganize and interpret the terms in this expansion.

The implied \(\beta\)-volatility of a swaption expiring \(T\) years from today is given by

\[
\sigma^2 = E \left[\frac{1}{T} \int_0^T \left(\frac{dS}{S^\beta} \right)^2 \right],
\]

and can readily be computed from the expansion above. In order to facilitate the interpretation of the result, let us introduce the following notation:

\[
(s^0)^2 = \frac{1}{T} \sum_{m \leq j, j' \leq n-1} \rho_{jj'} \int_0^T \Theta_j(s) \Theta_{j'}(s) \, ds,
\]

\[
\eta^0 = \frac{1}{T^2} \sum_{m \leq j, k \leq n-1, m \leq j', k' \leq n-1} \rho_{jj'} \rho_{kk'} \int_0^T \int_0^T M_{jk}(s, u) M_{j'k'}(s, u) \, ds \, du,
\]

\[
v^0 = \frac{1}{T^2} \sum_{m \leq j, k \leq n-1, m \leq j', k' \leq n-1} \rho_{jj'} \rho_{kk'} \int_0^T \int_0^T K_{jk}(s, u) M_{j'k'}(s, u) \, ds \, du,
\]

\[
\kappa^0 = \frac{1}{T^2} \sum_{m \leq j, k \leq n-1, m \leq j', k' \leq n-1} \rho_{jj'} \eta_{kk'} \int_0^T \int_0^T K_{jk}(s, u) K_{j'k'}(s, u) \, ds \, du,
\]

(57)
where we have introduced the kernels:

$$K_{jk}(s, u) = (S^0)^{-\beta} \frac{\partial \Lambda_j(s)}{\partial \sigma_k} D_k(u), \quad (58)$$

and

$$M_{jk}(s, u) = (S^0)^{-\beta} \left(\frac{\partial \Lambda_j(s)}{\partial F_k} C_k(u) - \frac{\beta}{S^0} \Lambda_j(s) \Lambda_k(u) \right). \quad (59)$$

In terms of these quantities,

$$\sigma^2 = (\sigma^0)^2 + (\eta^0 + 2\nu^0 + \kappa^0) T + \ldots, \quad (60)$$

i.e.

$$\sigma = \sigma^0 \left(1 + \frac{1}{2(\sigma^0)^2} (\eta^0 + 2\nu^0 + \kappa^0) T + \ldots \right). \quad (61)$$

This is our approximate, closed form expression for the swaption β-volatility in the SABR/LMM model.

Let us now analyze each of the terms on the right hand side of (61) in detail. The first term, σ^0, is the leading order approximation obtained by freezing the coefficients of the process for the swap rate at the initial forward curve and initial term structure of volatilities. The coefficient η^0 is the first subleading correction due to the forward rate portion of the dynamics. Its functional form is identical to that of the corresponding expansion in the classic LMM model, and it does not account for the dynamics of the stochastic volatility. Notice that $\eta^0 \geq 0$, and thus it shifts the value of the β-volatility up. The term proportional to κ^0 captures the impact of the stochastic volatility portion of the model dynamics on the implied β-volatility. It is also always nonnegative, $\kappa^0 \geq 0$, and thus it adds a positive contribution to the implied β-volatility. Finally, the term involving ν^0 describes the interplay between the forward rate and volatility dynamics. It can be of either sign, depending on the market snapshot.

In practical applications, a reasonable approach is to freeze the diffusion coefficients $\Lambda(s)$ and the kernels $K_{jk}(s, u)$ and $M_{jk}(s, u)$ at their $s = u = 0$ values. This allows one to calculate the integrals in (6.2) in closed form, yielding easy to implement formulas. Indeed, denoting the corresponding frozen quantities by Λ^0.

P. Hagan and A. Lesniewski
\(K_{jk}^0 \) and \(M_{jk}^0 \), respectively, we find

\[
\sigma_0^2 \approx (S_0^0)^{−2\beta} \sum_{m \leq j, j' \leq n−1} \rho_{jj'} \Lambda_{j'}^0 \Lambda_j^0,
\]

\[
\eta_0 \approx \frac{1}{2} \sum_{m \leq j, k \leq n−1} \rho_{jj'} \rho_{kk'} M_{jk}^0 M_{j'k'}^0,
\]

\[
\nu_0 \approx \frac{1}{2} \sum_{m \leq j, k \leq n−1} \rho_{jj'} \rho_{kk'} K_{jk}^0 K_{j'k'}^0,
\]

\[
\kappa_0 \approx \frac{1}{T^2} \sum_{m \leq j, k \leq n−1} \rho_{jj'} \eta_{kk'} K_{jk}^0 K_{j'k'}^0.
\]

7 Rapid calculation of the drift terms

Evaluating the drift terms along each Monte Carlo path is very time consuming and accounts for over 50% of total simulation time. On the other hand, they are relatively small as compared to the initial values of the LIBOR forwards and volatilities, and it is desirable to develop an efficient methodology for accurate approximate evaluation of the drift terms. In this section we describe such a methodology. It is based on the low noise solution to the model.

Consider a smooth function \(f(x, t) \), where \(x \in \mathbb{R}^n \). Using the low noise expansion (62), and expanding to order two in \(\epsilon \), we obtain the approximation:

\[
f(X(t), t) = f(t) + \varepsilon \sum_{1 \leq j \leq n} \frac{\partial f(t)}{\partial X_j} \int_0^t B_j(s) \, dW_j(s)
\]

\[
+ \varepsilon^2 \left(\sum_{1 \leq j \leq n} \frac{\partial f(t)}{\partial X_j} \int_0^t A_j(s) \, ds \right.
\]

\[
+ \sum_{1 \leq j, k \leq N} \frac{\partial^2 f(t)}{\partial X_j \partial X_k} \int_0^t \int_0^s \frac{\partial B_j(s)}{\partial X_k} B_k(u) \, dW_k(u) \, dW_j(s)
\]

\[
+ \frac{1}{2} \sum_{1 \leq j, k \leq N} \frac{\partial^2 f(t)}{\partial X_j \partial X_k} \int_0^t B_j(s) \, dW_j(s) \int_0^t B_k(s) \, dW_k(s)
\]

\[
+ O(\varepsilon^3).
\]

With an eye on the SABR/LMM dynamics, we shall further assume that
(i) \[
\frac{\partial B_j}{\partial X_k} = 0, \text{ if } j \neq k. \tag{64}
\]

(ii) The second derivatives of the function \(f \) are negligibly small:
\[
\frac{\partial^2 f}{\partial X_j \partial X_k} \approx 0. \tag{65}
\]

Now, freezing the coefficients \(A_j(s) \) and \(B_j(s) \) at \(s = 0 \) and carrying out the integrations, we obtain the following approximation:
\[
f(X(t), t) \approx f^0(t) + \varepsilon \sum_{1 \leq j \leq n} \frac{\partial f^0(t)}{\partial X_j} B_j^0 W_j(t) + \varepsilon^2 \sum_{1 \leq j \leq n} \frac{\partial f^0(t)}{\partial X_j} \left(A_j^0 + \frac{1}{2} \frac{\partial B_j^0}{\partial X_j} B_j^0 \right) t. \tag{66}
\]

As a consequence, the approximate formulas for the drifts in the SABR/LMM model read:
\[
f(X(t), t) \approx f^0(t) + \varepsilon \sum_{1 \leq j \leq n} \frac{\partial f^0(t)}{\partial X_j} B_j^0 W_j(t) + \varepsilon^2 \sum_{1 \leq j \leq n} \frac{\partial f^0(t)}{\partial X_j} \left(A_j^0 + \frac{1}{2} \frac{\partial B_j^0}{\partial X_j} B_j^0 \right) t, \tag{67}
\]

These approximations are remarkably accurate even for long dated options, and significantly cut down the calculation time.

A Change of numeraire technique

In this appendix, we state some facts, relevant for the purposes of this paper, about the change of numeraire technique. The presentation is tailored exactly to our needs, for a complete account we refer to e.g. [5].
Consider an asset whose dynamics is given in terms of an \(n \)-dimensional state variable \(X_1(t), \ldots, X_n(t) \). Under the measure \(P \), the asset’s dynamics reads:

\[
dX_j(t) = \Delta^P_j(t) \, dt + C^P_j(t) \, dW^P_j(t).
\] (68)

Our goal is to relate this dynamics to the dynamics of the same asset under an equivalent measure \(Q \):

\[
dX_j(t) = \Delta^Q_j(t) \, dt + C^Q_j(t) \, dW^Q_j(t).
\] (69)

The diffusion coefficients in these equations are, of course, the unaffected by the change of measure. We assume that \(P \) is associated with the numeraire \(N(t) \) whose dynamics is given by:

\[
dN(t) = A^N(t) \, dt + \sum_{1 \leq j \leq n} B^N_j(t) \, dW^P_j(t),
\] (70)

while \(Q \) is associated with the numeraire \(M(t) \) whose dynamics is given by:

\[
dM(t) = A^M(t) \, dt + \sum_{1 \leq j \leq n} B^M_j(t) \, dW^P_j(t).
\] (71)

A consequence of Girsanov’s theorem (see e.g. [21]) is the following transformation formula for the drift term. We define the following bracket operation:

\[
\{ X, Y \} (t) = \langle X, \log Y \rangle (t),
\] (72)

where \(\langle \cdot, \cdot \rangle \) denotes quadratic covariation. Then,

\[
\Delta^Q(t) \, dt = \Delta^P(t) \, dt + d \left\{ X, \frac{M}{N} \right\} (t).
\] (73)

There are three numeraires that we use in this paper:

(i) The zero coupon bond maturing at \(T_k \). Its time \(t \) value is

\[
P(t, T_k) = \prod_{\gamma(t) \leq i \leq k-1} \frac{1}{1 + \delta_i F_i(t)}.
\] (74)

The corresponding equivalent martingale measure \(Q_k \) is called the \(T_k \)-forward measure.

(ii) The rolling bank account, whose time \(t \) value is [11]

\[
P(t) = \frac{P\left(t, T_{\gamma(t)-1}\right)}{\prod_{1 \leq i \leq \gamma(t)-1} P(T_{i-1}, T_i)}.
\] (75)

The corresponding equivalent martingale measure \(Q_0 \) is called the spot measure.
The annuity associated with a forward starting swap, whose time t value is given the the level function (34). The corresponding equivalent martingale measure Q_{mn} is called the forward swap measure.

B Low noise expansions

Consider a multidimensional stochastic system of the form:

$$dX_j(t) = A_j(X(t), t)\, dt + \sum_{1 \leq k \leq N} B_{jk}(X(t), t)\, dW_k(t),$$

$$X_j(0) = X_j^0;$$

or, in the vector notation,

$$dX(t) = A(X(t), t)\, dt + B(X(t), t)\, dW(t),$$

$$X(0) = X^0,$$

where $X(t), A(X(t), t), W(t) \in \mathbb{R}^n$ are column vectors, and $B(X(t), t) \in \text{Mat}_n(\mathbb{R})$ is a square matrix.

Low noise expansions are most effective if the diffusion coefficients in (76) are small. For bookkeeping purposes we thus replace $B(X(t), t)$ by $\varepsilon B(X(t), t)$, where ε is an expansion parameter that in the end we shall set equal to 1. Keeping in mind that in the dynamics of the SABR/LMM model the drift coefficients are quadratic in the diffusion coefficients, we replace $A(X(t), t)$ by $\varepsilon^2 A(X(t), t)$. We are thus led to the following stochastic system:

$$dX(t) = \varepsilon^2 A(X(t), t)\, dt + \varepsilon B(X(t), t)\, dW(t),$$

$$X(0) = X^0.$$

Now, we seek the solution to the initial value problem (78) as a formal power series,

$$X(t) = \sum_{n \geq 0} \varepsilon^n X^n(t).$$

Anticipating that $X^0(t) = X^0$, and introducing the shorthand notation

$$A(t) = A(X^0, t),$$
$$B(t) = B(X^0, t),$$
we obtain the following infinite system of stochastic differential equations for the processes $X^n(t)$:

$$
\begin{align*}
 dX^0(t) &= 0, \\
 dX^1(t) &= B(t)\,dW(t), \\
 dX^2(t) &= A(t)\,dt + (X^1(t), \nabla) B(t)\,dW(t), \\
 dX^3(t) &= (X^1(t), \nabla) A(t)\,dt + \left[(X^2(t), \nabla) B(t) \\
 &\quad+ \frac{1}{2} (X^1(t) \otimes X^1(t), \nabla^2) B(t) \right] dW(t), \\
 \cdots
\end{align*}
$$

where (\cdot, \cdot) is the usual pairing operation, and ∇ denotes the gradient:

$$\nabla_j = \frac{\partial}{\partial X_j}.$$

The solution to the system (80) is

$$
\begin{align*}
 X^0(t) &= X^0, \\
 X^1(t) &= \int_0^t B(s)\,dW(s), \\
 X^2(t) &= \int_0^t A(s)\,ds + \int_0^t (X^1(s), \nabla) B(s)\,dW(s), \\
 X^3(t) &= \int_0^t (X^1(s), \nabla) A(s)\,ds \\
 &\quad+ \int_0^t \left[(X^2(s), \nabla) B(s) + \frac{1}{2} (X^1(s) \otimes X^1(s), \nabla^2) B(s) \right] dW(s), \\
 \cdots
\end{align*}
$$

Of course, the higher the order k of the expansion, the more complicated is the explicit expression for $X^k(t)$. Fortunately, for our purposes, the third order of
accuracy is sufficient. Iterating, we rewrite these expressions explicitly as

\[X^0(t) = X^0, \]
\[X^1(t) = \int_{\Sigma_1^t} B(s) \, dW(s), \]
\[X^2(t) = \int_{\Sigma_1^t} A(s) \, ds + \int_{\Sigma_2^t} (B(s_1) \, dW(s_1), \nabla) B(s_2) \, dW(s_2), \]
\[X^3(t) = \int_{\Sigma_2^t} (B(s_1) \, dW(s_1), \nabla) A(s_2) \, ds_2 \]
\[+ \int_{\Sigma_2^t} (A(s_1) \, ds_1, \nabla) B(s_2) \, dW(s_2) \]
\[+ \int_{\Sigma_3^t} ((B(s_1) \, dW(s_1), \nabla) B(s_2) \, dW(s_2), \nabla) B(s_3) \, dW(s_3), \]
\[+ \int_{\Sigma_3^t} (B(s_1) \, dW(s_1) \otimes B(s_2) \, dW(s_2), \nabla^2) B(s_3) \, dW(s_3), \]
\[\ldots . \]

Here, \(\Sigma_n^t \) denotes the simplex

\[\Sigma_n^t = \{ (s_1, \ldots, s_n) \in \mathbb{R}^n : 0 \leq s_1 \leq \ldots, \leq s_n \leq t \}. \]

This is the desired approximate solution to (76).

References

