Acknowledgements

- Zhouhua Li
- Jim Murphy
- Muhammad Sattar
Mortgage options

- Mortgage options = options on TBAs
- Expire 5 business days prior to the settlement of the TBA
- Standard strikes = \{ATM, \pm 1/2, \pm 1\}
- Quotes available from Deutsche Bank and Goldman Sachs
Modeling mortgage options

Duration of the TBA assumed a function $D(X)$ of the relative rate $X = M - C$, where $C$ is the coupon on the TBA, and $M$ is the current coupon.

Option value depends on the normal volatility $\sigma$ of $X$.

$D(X)$ calibrated to the prepayment model implied duration.

$\sigma$ is implied by the options market.
We parameterize the duration of a TBA
Duration of a TBA

by means of a logistic function of the relative rate \( X \):

\[
D (X) = L + (U - L) \frac{1}{1 + e^{-\kappa(X-\Delta)}}
\]

The parameters \( L, U, \kappa \) and \( \Delta \) are determined by fitting to durations computed from the prepayment model.
Price of a TBA

This produces the following shape of the price function of the TBA:
Price of a TBA

which is explicitly given by

\[ P(X) = \mu \exp\left(-\frac{(L + U)X}{2}\right) \left\{ \frac{\cosh \frac{\kappa \Delta}{2}}{\cosh \frac{\kappa (X - \Delta)}{2}} \right\}^{\frac{U - L}{\kappa}} \]

This function is the key input to the option model.

The value of \( \mu = P(0) \) is determined so that the distribution of prices is consistent with the options market, and is close to par.
Convexity of a TBA

The convexity of the TBA has the shape:
Convexity of a TBA

and is explicitly given by the following expression:

\[
\Omega (X) = D (X)^2 - \frac{\kappa (U - L)}{4} \left( \frac{1}{\cosh^2 \frac{\kappa (X - \Delta)}{2}} \right)
\]
Calibrating duration function parameters

- Generate macro rates scenarios (say, \( \pm 25 \text{ bp, } \pm 50, \pm 140, \ldots \)) and compute the corresponding durations of the TBA.

- Fit the function \( D(X) \). For the Fannie 5.0, the calibrated parameters are:

\[
\begin{align*}
L &= -0.677 \\
U &= 9.679 \\
\Delta &= 0.00344 \\
\kappa &= 108.624
\end{align*}
\]
Calibrating duration function parameters

The graph below shows the durations of the TBAs of different coupons as a function of the current coupon.
Calibrating duration function parameters

On this graph, the TBA duration is compared to the calibrated logistic function $D(X)$. 
We assume that the relative rate follows a normal process

\[ dX(t) = \sigma dW(t), \]

\[ X(0) = M - C, \]

where \( W(t) \) is a Brownian motion. The solution

\[ X(t) = M - C + \sigma W(t) \]

is implemented by a Monte Carlo simulation.
Mortgage option price

Calls and puts struck at $K$ and expiring at $T$ are valued according

\[
C = Z(T) \mathbb{E} \left[ \max (P(X) - K, 0) \right] \\
\mathcal{P} = Z(T) \mathbb{E} \left[ \max (K - P(X), 0) \right]
\]

Here, $Z(T)$ denotes the discount factor.

The valuation formulas do not lead to closed form expressions, and the evaluation of the expectations requires Monte Carlo simulations. The simulations lead to fast and accurate results.
We can now easily calibrate the volatility $\sigma$ by requiring that

- the price of the TBA, and
- the premium on the option

match the market values. This is done in two steps:

- Choose the parameter $\mu = \mu(\sigma)$ so that the mean of the price distribution is the market price of the TBA.
- Choose $\sigma$ to match the option premium.

Currently (as of September 17), $\sigma \simeq 265$ bp.
Implied current coupon volatility

Specifically, here is the September 17 snapshot of the options market (November expires):

<table>
<thead>
<tr>
<th>Strike</th>
<th>K</th>
<th>-1</th>
<th>-1/2</th>
<th>ATM</th>
<th>+1/2</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNCL5.0</td>
<td>σ</td>
<td>1 - 07</td>
<td>1 - 12+</td>
<td>1 - 185</td>
<td>1 - 095</td>
<td>1 - 013</td>
</tr>
<tr>
<td>99 - 016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike</th>
<th>K</th>
<th>-1</th>
<th>-1/2</th>
<th>ATM</th>
<th>+1/2</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNCL5.5</td>
<td>σ</td>
<td>0 - 273</td>
<td>1 - 002</td>
<td>1 - 057</td>
<td>0 - 28+</td>
<td>0 - 201</td>
</tr>
<tr>
<td>100 - 26+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strike</th>
<th>K</th>
<th>-1</th>
<th>-1/2</th>
<th>ATM</th>
<th>+1/2</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNCL6.0</td>
<td>σ</td>
<td>0 - 172</td>
<td>0 - 212</td>
<td>0 - 261</td>
<td>0 - 16+</td>
<td>0 - 08+</td>
</tr>
<tr>
<td>102 - 012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and the implied current coupon volatilities (in basis points) are:

<table>
<thead>
<tr>
<th></th>
<th>$K$</th>
<th>$-1$</th>
<th>$-1/2$</th>
<th>ATM</th>
<th>$+1/2$</th>
<th>$+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNCL5.0</td>
<td>$\sigma$</td>
<td>262.5</td>
<td>263.4</td>
<td>264.2</td>
<td>265.7</td>
<td>267.4</td>
</tr>
<tr>
<td>FNCL5.5</td>
<td>$\sigma$</td>
<td>263.7</td>
<td>265.6</td>
<td>267.6</td>
<td>270.1</td>
<td>272.9</td>
</tr>
<tr>
<td>FNCL6.0</td>
<td>$\sigma$</td>
<td>259.5</td>
<td>261.6</td>
<td>263.5</td>
<td>267.3</td>
<td>272.1</td>
</tr>
</tbody>
</table>
Implied volatility exhibits smile:
Relative value

The stochastic model allows to assess richness / cheapness of current coupon volatility:

- Versus realized current coupon volatility ($\approx 235$ bp as of September 17).
- Versus suitable swaption volatilities.
Risk characteristics of mortgage options

Mortgage options are options on convex assets (prepayment options). Their risk is a composition of optionalities.

- **Delta**
  \[ \Delta = \Delta_{BS} \times \Delta_{TBA} \]

- **Gamma**
  \[ \Gamma = \Gamma_{BS} \times (\Delta_{TBA})^2 + \Delta_{BS} \times \Gamma_{TBA} \]

- ...
Delta risk of a mortgage call

[Graph showing the delta risk of a mortgage call with relative rates on the x-axis and DV01 on the y-axis.]
Gamma risk of a mortgage call
CC delta risk of a mortgage call

[Graph showing the relationship between CC delta and relative rate]
CC gamma risk of a mortgage call
Swaption vol vega risk of a mortgage call
Delta risk of a mortgage put
Gamma risk of a mortgage put

![Graph showing gamma risk of a mortgage put with relative rate on the x-axis and gamma on the y-axis.](image-url)
CC delta risk of a mortgage put
CC gamma risk of a mortgage put

![Graph showing the CC gamma risk of a mortgage put.](image-url)
Swaption vol vega risk of a mortgage put

![Graph showing the relationship between Vega and Relative rate for mortgage options. The x-axis represents the Relative rate ranging from -300 to 500, and the y-axis represents Vega ranging from -0.0000 to 0.0800. The graph peaks at around a Relative rate of 100, showing a significant increase in Vega.]

Mortgage Options – p. 31